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Summary. We interpret a Voronoi region as the shape achieved by a crystal that
grows from a seed and stops growing when it reaches either the domain boundary or
another crystal. Using this analogy we devise a method for generating anisotropic
boundary-conforming Voronoi regions and their dual Delaunay triangulation for a
set of points. The method simulates the propagation of crystals as evolving fronts
modelled by a level set method. The generation of anisotropic Voronoi regions is
achieved by re-interpreting the user-specificied Riemmanian metric in terms of the
propagation speed normal to the boundary of the crystal.
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1 Introduction

Anisotropy in the generation of Voronoi regions is desirable when one tries
to generate meshes where elements are required to be stretched along certain
directions such as in aerofoil boundary layers and wakes. The Riemannian
metric field required to generate anisotropic mesh elements with spatial vari-
ations in size and shape is often incorporated in practice through the use
of local tranformations [3], but such methods do not guarantee the validity
of a dual Delaunay triangulation. Some recent theoretical progress in that
direction is reported in [2, 5, 4].

Here we propose a technique based on crystal growth with a propagation
speed dictated by the Riemannian metric field that permits a straightfor-
ward generation of anisotropic Voronoi regions that conform to a prescribed
boundary and their dual anisotropic Delaunay triangulation with stretched
triangles, which is one of the most problematic aspects of mesh generation
using a Voronoi-based approach.
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2 Formulation

The growth of the crystals from an initial set of S seeds is modelled by a
combined formulation of those proposed in [9, 7]. The front of each crys-
tal, denoted by the index s, is assimilated to a constant value of a function
ϕs(x, y, t) that evolves according to the equation

∂ϕs

∂t
+ βsF s |∇ϕs| = 0 s = 1, . . . , S. (1)

Here F s is the speed of propagation in the direction normal to the crystal,
ϕs, βs is a sensor to detect the collision of the crystal with other crystals or
the boundary. A modified version of the sensor proposed by [7] that allows
for an arbitrary number of crystals to meet at a point is used to detect these
collisions. The treatment of the collision with the boundary as if it was a
crystal leads to isolated regions. To remedy this problem, we impose a dry
contact of the crystal with the boundary, i.e. we require the normal component
of the velocity of the crystal at the boundary to be zero.

We introduce anisotropy via a user-specified spatial distribution of the
metric tensor, M(x, y), e.g. [3, 2], and a level set speed function, F s(x, y),
given by

F s ∝
√
NsT M Ns (2)

where Ns is the direction of the normal to boundary of the crystal, generated
from seed s, evaluated at (x, y).

The governing equations (1) are solved using the explicit finite-differences
discretization proposed in [9]. An example of growth of a set of crystals using
a user-specified metric field is shown in Fig. 1. The metric field is depicted
in Fig. 1(a) where the axes of the ellipses are inversely proportional to the
eigenvalues of the metric tensor. The speed function at a point is calculated
as a weighted average of the values of the speed function for each specified
metric tensor. The evolution of the crystals, shown in Fig. 1(b), illustrates the
consistency between the present method and the specified metric field.

3 Examples of application

The first example deals with the generation of boundary-conforming Voronoi
regions for a computational domain which is the interior region to two curves
that exhibit convex and concave segments. Fig.2(a) and 2(b) show the metric
field and the Voronoi regions generated from 17 seeds, respectively. This ex-
ample illustrates the ability of the method to generate Voronoi regions that
conform to boundaries of arbitrary topology. Using a 200× 200 mesh, it took
approximately 770 seconds (for a 2.13 GHz processor) to reach the steady-
state crystal configuration shown in Fig.2.
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(a) (b)

Fig. 1. Crystal growth governed by a spatially-varying metric field: (a) ellipses
represent the metric field; and (b) growth of the crystals.

(a) (b)

Fig. 2. A complex domain: (a) prescribed anisotropic metric field; (b) boundary-
conforming Voronoi partition.

In the second example we consider the region around a symmetric aero-
foil with a distribution of 130 seeds located uniformly away from the aerofoil
and clustered in the normal direction near the aerofoil surface and wake. We
consider isotropic and anisotropic metric fields shown in Figs. 3(a) and 3(f),
respectively. In the anisotropic case, the metric tensor at a point on the aero-
foil surface is aligned with the tangent at that point. The Voronoi partitions
obtained with these metric fields are shown in Figs. 3(c) and 3(d) for the
isotropic and anisotropic cases, respectively. The dual Delaunay triangula-
tions for these were constructed by joining two colliding seeds with a line
segment. The resulting isotropic and anisotropic Delaunay triangulations are
shown in Figs. 3(e) and 3(f), respectively. Both Delaunay triangulations are
valid, but looking more closely at the mesh in the region in the wake near the
trailing edge, we notice the mesh obtained with an isotropic mesh field, shown
in Fig. 3(g) and which corresponds to a conventional Delaunay triangulation,
exhibits triangles stretched in the direction perpendicular to the wake. This
is an undesirable but well-documented, e.g. [1], feature of using an isotropic
metric field and clustered points in the normal direction. The usual remedy
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here is to modify the mesh via side swapping, but then the result is no longer
a Delaunay triangulation. On the other hand, the mesh generated using the
anisotropic metric field in Fig. 3(h) does not have such problems and the
triangles are stretched along the right direction.

4 Conclusions

We have presented a level set method for generating Voronoi regions, and their
dual Delaunay triangulations, that complies with a user-specified metric field
through the specification of an appropriate speed function. The method per-
mits a straightforward treatment of the interfaces between regions and, more
importantly, addresses in a natural manner two major issues in Delaunay-
based mesh generators: the generation of highly-stretched Voronoi regions
and the conformity to non-convex realistic boundaries.

The cost of computations depends on the number of seeds and the size of
the rectangular mesh, which is determined by the minimum distance between
the seeds. The mesh size also determines the number of timesteps required to
converge to the final Voronoi partition due to the CFL stability restriction of
the explicit time integration used. The method can be readily implemented in
3D but efficiency will be an issue. However, performance improvements can
be achieved using the narrow band [8] or the fast marching [6] methods that
have not been incorporated in the current implementation.
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Fig. 3. Comparison for a domain around a symmetric aerofoil: The distribution of
the isotropic (a) and anisotropic (b) metric fields; corresponding Voronoi partitions
(c) and (d); the complete Delaunay triangulations (e,f); and enlargement near the
wake of the aerofoil (g,h). Notice how the introduction of anisotropy in the metric
field aligns the triangles with the wake as required.


